
The Implementation of the Soar Kernel

Implementation of the
Soar Kernel

(Karen J Coulter)

June 17, 2005

Please refer to latest online version:

http://sitemaker.umich.edu/soar/documentation_and_links

Soar Workshop 25 ©2005. The University of Michigan 2

The Implementation of the Soar Kernel

In this Talk
Basic structure of an agent
Agent creation and management
What happens when “Run” an agent
RHS functions
What information is accessible outside kernel?

Data
Events

High-level roadmap of kernel functionality
(satellite view)
The gSKI Agent Scheduler

Soar Workshop 25 ©2005. The University of Michigan 3

The Implementation of the Soar Kernel

NOT in this Talk

Soar 7 differences
Low-level Implementation details
Special exceptions (there are MANY)
Backtracing and Support
Anything else I forgot, or that didn’t
occur to me people wanted to know

Soar Workshop 25 ©2005. The University of Michigan 4

The Implementation of the Soar Kernel

Kernel recent history (Soar 8.1)

8.1 / 8.2 8.3 8.4 8.5 8.6 8.6.1

??

gSKI interface to
kernel added. Tcl
decoupled from
Kernel. C++
compiler.

Dependent on Tcl interface for commands and GUI

Soar Technology

Bug fixes

Minor interface changes

New interface
implementation

Some command
changes

Can be embedded

Improved
packaging for
distribution and
installation

SML added to
encapsulate Soar
and provide remote
capabilities.

Support for Multi-
language interface

Event system
improvements.

Soar 7 mode.

More
environments

Soar Workshop 25 ©2005. The University of Michigan 5

The Implementation of the Soar Kernel

Soar Agents are:

Independent -- no knowledge of other agents
unless explicitly supported by application, even
then only in working memory. (no omniscient
being)
Maintained in linked list in kernel. Order is not
guaranteed, but is consistent during execution.
Local only. Kernel itself has no support for
creating or running agents outside the local
process.

Soar Workshop 25 ©2005. The University of Michigan 6

The Implementation of the Soar Kernel

Agent Management

Soar Kernel maintains a linked list of agent
pointers, agent_count and pointers to
callback functions for each kernel event
(more later).
Soar source code operates on a single agent
structure. Only in the scheduler, in the
routines that manage the running of agents,
does the code loop over the linked list of
agent pointers.

Soar Workshop 25 ©2005. The University of Michigan 7

The Implementation of the Soar Kernel

Basic structure of an agent
Parameters to define execution (sysparams)
Settings for user information to be generated in
“Trace” as agent executes (sysparams)
Current state information (current-phase, decision-
cycle-count, stats, etc)
Long-term production memory (rete)
Short-term working memory (rete)
Internal data structures, including match set, list of
wmes, and memory pools
Struct is defined in agent.h (8.6) or soarkernel.h(8.5)

Soar Workshop 25 ©2005. The University of Michigan 8

The Implementation of the Soar Kernel

Agent Creation

Check that name is unique within kernel
Allocate memory for agent structure
Initialize parameters and settings
Create top state and IO links

New in 8.6!
Previously created in first Input Phase

Optionally source file(s) to define settings and
load productions (defined by application)

Soar Workshop 25 ©2005. The University of Michigan 9

The Implementation of the Soar Kernel

Loading Productions
Productions added to Rete as they are parsed:
condition by condition and then action by action

Not scanned for errors and then stored
Rete may reorder conditions internally for better
match efficiency
“Documentation string” stored, but comments from
file are not
Multi-valued attributes must be declared before
loading productions to have any impact on Rete
organization

Soar Workshop 25 ©2005. The University of Michigan 10

The Implementation of the Soar Kernel

Working Memory
Soar backtraces WMEs through their preference pointers when building
chunks and calculating i-support:

Soar still goes thru Preference “Phase” for non-operators, but everything
defaults to acceptable and parallel
In Propose and Apply, after preference calculations, Soar continues directly
to promote preferences to Working-Memory

WMEs that are added by add-wme or through SML do not have
support (preferences) and need to be explicitly removed from working
memory when no longer valid. (Agents can not reject them.)
WMEs no longer connected to a state will be garbage-collected,
including any that were added by application through SML or with
add-wme.
Garbage collection is automatic, but not necessarily immediate.
More…

Soar Workshop 25 ©2005. The University of Michigan 11

The Implementation of the Soar Kernel

Input and Output Links
Architecture automatically creates ^io ^input-link and
^output-link on the top state (S1) in working memory.
WMEs exactly the same as rest of working memory.
^input-link is a convenience for applications to organize and
update sensor input to Soar agents.
Soar tracks when changes made to ^output-link so can alert
applications.
SoarKernel supports multiple output-links so can segregate multiple
“actuators.” Additional output-links must be created by agent or
application, but Soar will automatically track when changes made
just like for default ^output-link. (May require some changes
to gSKI and SML if using those interfaces.
KernelSML provides simplified management of IO links

Soar Workshop 25 ©2005. The University of Michigan 12

The Implementation of the Soar Kernel

Methods for running agents:
“Wrapper” functions in kernel
Run_forever() runs Soar forever, until interrupted or halted.
Run_for_n_phases(n) runs Soar for the specified number (n) of top-level phases.
Run_for_n_elaboration_cycles(n) runs Soar for a given number (n) of elaboration
cycles. In this function, Input phase, Decision phase, and Output phase are each counted
as one elaboration cycle. In Propose and Apply, an elaboration cycle consists of firing all
productions at one level of the goal stack
Run_for_n_decision_cycles(n) runs Soar for the specified number (n) of decision
cycles.
Run_for_n_modifications_of_output(n) (RunTilOutput) soar runs
do_one_top_level_phase n times, where n starts at 0 and is incremented anytime the
output link is modified by the agent. n is not incremented when the output-link is created
nor when the output-link is modified during an Input Cycle, (when getting feedback from a
simulator).

For most synchronous simulation environments, usually n = 1.

Still in Kernel, but not in gSKI or CommandLineInterface since rarely used:
Run_for_n_selections_of_slot(n): runs Soar until the nth time a selection is made for a
given type of slot, either state_symbol or operator_symbol.
Run_for_n_selections_of_slot_at_level(n): runs Soar for n selections of the given slot
at the given level, or until the goal stack is popped so that level no longer exists.

Soar Workshop 25 ©2005. The University of Michigan 13

The Implementation of the Soar Kernel

Agent Scheduling
Agent “scheduling” ie the queueing and running of agents in the
kernel, is handled outside the “kernel” (by gSKI in Soar 8.6)
The commandline args for running agents are parsed and passed to
the scheduler, which configures agent parameters, and calls one of the
kernel execution routines, such as Run_for_n_decisions.
When multiple agents exist in the same kernel process, all agents
always have the same go_type and go_number for a given run. Users
can not run one agent by phases and another by decisions, or one
agent for 10 phases and one agent for 2 phases, UNLESS the agents
are each run one at a time with separate calls to run a single agent.

Stop-soar: “temporarily” terminates at the end of the current phase. A
new “Run” command resets stop-soar to False. Generated by RHS and
external events
agent-halted: the agent won’t run again until an init-soar clears
working memory. Generated by RHS

Soar Workshop 25 ©2005. The University of Michigan 14

The Implementation of the Soar Kernel

What happens during Run
Agent parameters for type of run (go_type) and n (go_number)
configured by scheduler (gSKI).
A scheduler invokes appropriate kernel wrapper function, which
tests agent parameters stop_soar and system_halted, starts
timers, and then calls do_one_top_level_phase until the requisite
number of loops have been completed, or agents halts or is
interrupted.
Wrapper functions operate on one agent at a time, so if calling
run_for_n_decision_cycles(5), the first agent runs for 5 decision
cycles, then the next agent, then the next, til all agents have been
run.
The gSKI scheduler supports a finer grain of “interleaving” among
agents when executing Run_for_n_decision_cycles or
Run_for_n_modifications_of_output

Soar Workshop 25 ©2005. The University of Michigan 15

The Implementation of the Soar Kernel

For each phase:
if TRACE_PHASES_SYSPARAM is true, print out “Phasename starting”
invoke BEFORE_phasename agent callback (gSKI_EVENT_BEFORE_PHASE…)
start the phase-specific timers for the agent

execute phase-specific code, such as checking/setting parameters
and calling phase-specific subroutines

update any counters or agent parameters
set agent->current_phase to the next phase in the cycle

turn off the phase-specific timers for the agent
invoke the AFTER_phasename agent callback (gSKI_EVENT_AFTER_PHASE…)
if TRACE_PHASES_SYSPARAM is true, print out “Phasename ending”

Soar Workshop 25 ©2005. The University of Michigan 16

The Implementation of the Soar Kernel

RHS functions in 8.6
Tcl no longer the de-facto interface mechanism for
the kernel
Soar 8.6 “clients” interface thru SML which supports
SWIG automagically get C++, Tcl, Java, Perl,
Python
Tcl no longer a built-in RHS function, but can be
added back in for any application that includes the
sml_tcl_interface package
Exec is the generic RHS function for registering and
invoking custom functions on the RHS of productions.
No other changes to default set of RHS functions.

Soar Workshop 25 ©2005. The University of Michigan 17

The Implementation of the Soar Kernel

What information is accessible
outside kernel

Data is per-Agent, thru agent interface
Agent counters and statistics, including timer
values
Settings for run-control (sysparams):
learning, trace information, backtracing
State information: current_phase, current
operator, goal_stack_level
Production memory
Working memory

Soar Workshop 25 ©2005. The University of Michigan 18

The Implementation of the Soar Kernel

When is information accessible
outside kernel: Events

Extensive callback system thru gSKI and SML supports
executing application code at almost any point in Run
cycle.
Kernel-based (once for all agents) and agent-based
(once for each agent) events

Before and after running all agents
At start and end of each phase for each agent
Other events being added: after_all_output_phases, other
“update world” locations as needed

Also support User-defined RHS functions
Agent information also available whenever kernel is idle

Soar Workshop 25 ©2005. The University of Michigan 19

The Implementation of the Soar Kernel

High-level roadmap of kernel
functionality (satellite view)

(This is a listing of non-obvious functions and their locations…)
Initializing and running Soar, and all top-level phases defined: init-soar.cpp

(see do_one_top_level_phase())
Preference resolution and operator selection: decide.cpp

(also impasse generation and all garbage collection)
Main firer routines (do_preference_phase, create_instantiation): recmem.cpp
Support for Goal Dependency Set maintenance: consistency.cpp
Loading and excising productions: parser.cpp
Slot management and garbage collection: tempmem.cpp
Format Soar’s output: trace.cpp

More info in source and header files, some in Soar FAQ. Document in progress.

Soar Workshop 25 ©2005. The University of Michigan 20

The Implementation of the Soar Kernel

Soar’s Memory Management
“Memory pools” malloc’d from operating system in
(32K) blocks
Soar frequently allocates and deallocates within
pools, but only when exceeds current pool size does
Soar malloc more blocks for pool
Internal memory mgmt scheme can hide details from
profilers and other code tools not always a good
thing.
Applications can choose to have Soar use straight
malloc instead of pools, but performance will be
drastically affected.
See allocate_with_pool in mem.h, but be VERY
careful if ever change it. (not recommended)

	Implementation of the �	Soar Kernel
	In this Talk
	NOT in this Talk
	Kernel recent history (Soar 8.1)
	Soar Agents are:
	Agent Management
	Basic structure of an agent
	Agent Creation
	Loading Productions
	Working Memory
	Input and Output Links
	Methods for running agents: �“Wrapper” functions in kernel
	Agent Scheduling
	What happens during Run
	For each phase:
	RHS functions in 8.6
	What information is accessible 	outside kernel
	When is information accessible 	outside kernel: Events
	High-level roadmap of kernel functionality (satellite view)
	Soar’s Memory Management

